Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea
نویسندگان
چکیده
Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.
منابع مشابه
Role of Quercetin in Modulating Chloride Transport in the Intestine
Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs) are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid qu...
متن کاملSmall-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel.
Calcium-activated chloride channels (CaCCs) are widely expressed in mammalian tissues, including intestinal epithelia, where they facilitate fluid secretion. Potent, selective CaCC inhibitors have not been available. We established a high-throughput screen for identification of inhibitors of a human intestinal CaCC based on inhibition of ATP/carbachol-stimulated iodide influx in HT-29 cells aft...
متن کاملGlucose stimulates calcium-activated chloride secretion in small intestinal cells.
The sodium-coupled glucose transporter-1 (SGLT1)-based oral rehydration solution (ORS) used in the management of acute diarrhea does not substantially reduce stool output, despite the fact that glucose stimulates the absorption of sodium and water. To explain this phenomenon, we investigated the possibility that glucose might also stimulate anion secretion. Transepithelial electrical measuremen...
متن کاملInhibition of cAMP-Activated Intestinal Chloride Secretion by Diclofenac: Cellular Mechanism and Potential Application in Cholera
Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect re...
متن کاملBiol. Pharm. Bull. 30(3) 502—507 (2007)
in the pathogenesis of secretory diarrhea. It is a passive process driven by the active secretion of ion, predominantly chloride. The cellular transport mechanism of intestinal chloride secretion is well defined. Chloride is taken up across the basolateral membrane via a Na /K /2Cl cotransporter (NKCC1) and exits across the apical membrane via cAMP-sensitive (CFTR) and calcium-sensitive (CaCC) ...
متن کامل